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Abstract Relaxation dispersion spectroscopy is one of

the most widely used techniques for the analysis of protein

dynamics. To obtain a detailed understanding of the protein

function from the view point of dynamics, it is essential to

fit relaxation dispersion data accurately. The grid search

method is commonly used for relaxation dispersion curve

fits, but it does not always find the global minimum that

provides the best-fit parameter set. Also, the fitting quality

does not always improve with increase of the grid size

although the computational time becomes longer. This is

because relaxation dispersion curve fitting suffers from a

local minimum problem, which is a general problem in

non-linear least squares curve fitting. Therefore, in order to

fit relaxation dispersion data rapidly and accurately, we

developed a new fitting program called GLOVE that

minimizes global and local parameters alternately, and

incorporates a Monte-Carlo minimization method that

enables fitting parameters to pass through local minima

with low computational cost. GLOVE also implements a

random search method, which sets up initial parameter

values randomly within user-defined ranges. We demon-

strate here that the combined use of the three methods can

find the global minimum more rapidly and more accurately

than grid search alone.

Keywords Relaxation dispersion curve fitting � Fitting

software � Speed and accuracy � Global fit � Monte

Carlo-minimization � Local minimum problem

Introduction

Analysis of protein dynamics is a highly topical area that aims

at an understanding of the detailed mechanisms by which

proteins function (Karplus 2010). Relaxation dispersion

NMR spectroscopy is one of the most powerful techniques

available for quantitation of protein dynamics (Tollinger et al.

2001; Loria et al. 1999), providing site-specific information

on chemical (conformational) exchange processes in proteins

on ls–ms time scales. Detailed insights into the thermody-

namics and kinetics of many important biological processes,

including enzyme catalysis (Bhabha et al. 2011; Henzler-

Wildman et al. 2007; Boehr et al. 2006), protein–protein

interaction (Vallurupalli et al. 2008; Sugase et al. 2007a;

Sugase et al. 2007b), and protein folding (Yanagi et al. 2012;

Meinhold and Wright 2011), have been obtained from

relaxation dispersion experiments. An advantage of this

method is that it can probe low-populated excited states that

are invisible to conventional biophysical methods. Structural

information on the invisible excited state is also obtained in

the form of the chemical shift differences between the ground

and excited states. Remarkable progress has recently been

made in development of methods for determination of three-
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dimensional structures of low-populated (excited) states

using the chemical shift differences obtained from relaxation

dispersion experiments as conformational restraints (Neu-

decker et al. 2012; Bouvignies et al. 2011).

Needless to say, it is crucial to fit relaxation dispersion

data accurately for a good understanding of protein func-

tions in the light of a dynamic structure. Several computer

programs to analyze relaxation dispersion data have

become publicly available, such as GUARDD (Kleckner

and Foster 2011), NESSY (Bieri and Gooley 2011),

CATIA (http://pound.med.utoronto.ca/*flemming/catia/),

and CPMGFit (http://cpmcnet.columbia.edu/dept/gsas/bioc

hem/labs/palmer/software/cpmgfit.html). These programs

fit relaxation dispersion curves to the theoretical equation

using the Levenberg–Marquardt algorithm (LMA) or the

interior-point algorithm (Press et al. 2007). Although these

algorithms are widely used for non-linear least square

fitting, a common drawback is that they often become

trapped in local minima, resulting in incorrect fitted

parameters. This issue is more serious in global fits, in

which some parameters, such as the exchange rate and

population in relaxation dispersion curve fitting, are shared

among multiple datasets (e.g. dispersion data for multiple

residues), because more local minima exist in the param-

eter space. (Note that the terms ‘‘global’’ and ‘‘local’’ are

used for both the minimum least-squares errors and for

fitting parameters in this paper. The terms ‘‘global mini-

mum’’ and ‘‘local minimum’’ represent the minimum least-

squares errors, and ‘‘global parameter’’ and ‘‘local param-

eter’’ represent fitting parameters.) To find the global

minimum that provides the best-fit parameter values, the

dataset should be fitted multiple times from different initial

parameter sets within a certain parameter space. To explore

the whole parameter space, the aforementioned programs

use the grid search method, in which each parameter range

is divided by a user-specified grid size, and the dataset is

fitted from the parameter sets on all grid points. The grid

search, however, fails to find the global minimum in cases

where there is a local minimum between the global mini-

mum and the grid point nearest to it. Whether such a local

minimum exists or not depends on how large the parameter

ranges are and how many grid points are defined. To avoid

such local minima, the grid sizes should be sufficiently

large. An increase in the grid size, however, requires longer

computational time. Grid sizes are usually uniformly

increased for all parameters because it is difficult to

determine which parameter requires a larger grid size

before the fit. The grid search is usually time-consuming,

particularly for global fits because of the large number of

local minima. Therefore an alternative method that can

pass through local minima is desirable, to find the global

minimum with lower computational cost.

Here, we demonstrate fast and accurate fitting of

relaxation dispersion data using a newly developed soft-

ware package global and local optimization of variable

expressions (GLOVE). GLOVE, a non-linear least square-

fitting program utilizing the LMA, is capable of hybrid

local and global fits of relaxation dispersion data. To

enable the fitting parameters to pass through local minima,

we implemented a new fitting method that minimizes

global parameters and local parameters alternately. Using

this method, a parameter set that becomes trapped in a local

minimum during the minimization of the global parameters

can be further minimized in the subsequent minimization

of local parameters. In the following round of the mini-

mization process, the global parameters will also be further

minimized. Although this minimization method is power-

ful, it cannot minimize a parameter set trapped in local

minima of both global and local parameters. Thus, we also

incorporated the Monte Carlo-minimization (MCMIN)

method (Metropolis et al. 1953; Kirkpatrick et al. 1983; Li

and Scheraga 1987) within GLOVE, which can pass

through local minima by adding random values to the

parameter set, followed by additional minimization.

Moreover, the grid search method and the random search

method, which selects initial parameter values randomly

from within the user-defined ranges, were also imple-

mented in GLOVE. We fitted experimental relaxation

dispersion data using these methods and several combina-

tions of them. None of the fits using solely a grid search

found the global minimum, whereas almost of all fits

converged to the global minimum as long as the new

minimization method was used at the end of the fits. Fur-

thermore, starting MCMIN from a local minimum found by

random search reached the global minimum more rapidly

than other methods.

Theory and methods

The GLOVE program

In what follows, characters written in Courier New repre-

sent the GLOVE related computational words such as

command, keywords, and options used in the command

lines, GLOVE input files or GLOVE output files.

GLOVE is a command line C?? program developed to

solve non-linear least square problems rapidly and accu-

rately utilizing the LMA. For relaxation dispersion curve

fitting, LMA minimizes iteratively the following target

function:

v2 ¼
XN

i¼1

R
i;exp
2 � R

i;calc
2

ri

 !2

; ð1Þ
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where R2
i,exp and R2

i,calc are experimental and calculated

effective R2 relaxation rates, R2
eff, respectively, and ri is the

estimated experimental uncertainty described below.

GLOVE has five methods (ONE, ONEEX, GRID,

RANDOM, and MCMIN) to set up initial parameter val-

ues, which are subsequently minimized using LMA. These

methods can be run sequentially in any order, and the same

method can be repeated. The best-fit parameter set that

provides the lowest v2 value is stored in the memory, and is

replaced with a better parameter set whenever one is found

during a fit.

ONE is a single point minimization starting from the

lowest limit, or an initial value optionally defined in the

input file. Global and local parameters are separated, and

they are minimized alternately. Once the minimization

becomes trapped in a local minimum, usually during the

minimization of global parameters, the fit stops. ONEEX is

the same as ONE except that the fit does not stop until both

global and local parameters become stuck in local minima.

In the case of global fits, ONEEX provides better results

than ONE, but it is much slower to converge than ONE.

The GRID, RANDOM and MCMIN methods adopt the

same stopping condition as ONE because these methods

are designed to search the parameter space rapidly at the

initial and middle stages of a fit.

GRID represents the grid search method. It was

designed to search global parameters and local parameters

separately for a global fit. Initially, global parameters are

fixed to a grid point, and local parameters of each dataset

are optimized using the grid search algorithm. Subse-

quently, the global parameters are unfixed, and all param-

eters including global parameters are minimized starting

from the optimized local parameters. This process is

repeated until all grid points of the global parameters have

been examined.

RANDOM and MCMIN correspond to the random

search method and the MCMIN method, respectively.

RANDOM chooses initial values randomly from the user-

defined parameter range, followed by minimization. It is

used for searching the global minimum roughly from the

whole parameter space. The fit using RANDOM is repe-

ated by the user-defined iterations. In contrast to RAN-

DOM, MCMIN is used for searching more finely for the

global minimum, starting from the vicinity of the current

best-fit parameter set found by RANDOM (or other

methods). A detailed description of MCMIN is given in the

next section.

The Monte Carlo-minimization

The MCMIN method is a version of the simulated

annealing protocol utilizing the Metropolis criterion

(Metropolis et al. 1953; Kirkpatrick et al. 1983). It has been

successfully applied by Scheraga and co-workers to find

the minimum energy structure in a peptide folding simu-

lation (Li and Scheraga 1987) by randomly changing a

dihedral angle among all the variable dihedral angles,

followed by energy minimization to bypass large energy

barriers. The energy-minimized conformation is examined

by the Metropolis criterion to compare it with the previ-

ously accepted conformation. The GLOVE version of the

MCMIN defines the initial parameter values as the current

best-fit parameter values plus or minus random values that

distribute in a Gaussian manner, enabling the parameter set

to pass through a local minimum (Fig. 1). The new

parameter set is minimized using LMA, and is accepted if

v2 is smaller than that of the current best-fit parameter set.

The MCMIN calculation continues to run as long as

MCMIN finds a better parameter set (passes through a local

minimum) within the user-specified number of iterations,

typically set to more than 5. Namely, the iteration count of

the MCMIN calculation is reset to 0 if v2 decreases. The

amplitudes of the random values are controlled by a scaling

factor defined in the GLOVE input file. Note that it is

important to choose an appropriate scaling factor to mini-

mize v2 efficiently. If the scaling factor is too small, local

minima cannot be passed through. On the other hand, if the

scaling factor is too large, the new parameter set becomes

quite different from the current best-fit parameter set,

resulting in a significant increase in v2. To find the global

χ2
R

ed
u

ce
d

 

Parameter space

Fig. 1 Schematic representation of the Monte-Carlo minimization

method implemented in GLOVE. The dashed line arrow represents

the Monte–Carlo process that adds random values to the current best

fit parameters, enabling the parameters to pass through a local

minimum. The reduced v2 value usually increases in this step. The

new parameter set is subsequently minimized as represented by the

curved solid arrow
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minimum rapidly and accurately, MCMIN should be run

repeatedly with successive reductions in the scaling factor.

At the initial stage of fitting, the fitting parameters are

usually far from the best-fit values, and thus the scaling

factor should be set to a large value. At later stages, the

variation of the parameters should be smaller as the

parameters approach the global minimum.

Fitting model for a two-state exchange

Although GLOVE incorporates many fitting models,

including two- and three-state exchange models, here we

describe the Carver and Richards equation (Carver and

Richards 1972), which is most frequently used for relaxa-

tion dispersion curve fitting, and its implementation in

GLOVE. Other fitting models are described in Supporting

Information.

The Carver and Richards equation, called CPMG_

RICHARDS in GLOVE, calculates well-approximated R2
eff

values for all exchange regimes of a two-state exchange

model (A�
kAB

kBA

B) under the experimentally accessible condi-

tion. The original equation is represented as.

where Dx represents the chemical shift difference between

the two states in units of rad s-1, R2A
0 and R2B

0 represents

intrinsic transverse relaxation rates of the states A and B,

respectively. Although the intrinsic transverse relaxation

rates of the two states can be different, they are usually

assumed to be the same, i.e., R2
0 = R2A

0 = R2B
0 . The

assumption has little effect upon the analysis of the exchange

when the exchange rate is much faster than the difference

between R2A
0 and R2B

0 (kex � R2A
0 - R2B

0 ). In addition to the

assumption on R2
0, GLOVE adopts kex (sum of the forward

and backward rates, kAB ? kBA) and pApB (product of the

two populations, pA 9 pB) instead of kAB and kBA to reduce

the parameter spaces around the commutable kAB and kBA,

enhancing the computational efficiency and stability. The

population of state B, designated as the lower-populated

state, is calculated according to the formula pB ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4pApB

p
ð Þ=2. The exact equation used in GLOVE is

represented as

Reff
2 ¼ R0

2 þ
1

2
kex �

1

sCP

cos h�1 Dþ cos h gþ
� �

� D� cos g�ð Þ
� �� �

D� ¼
1

2
�1þWþ 2Dx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ n2

p
" #

g� ¼ sCP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�Wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ n2

q	 
s

W ¼ k2
ex � Dx2

n ¼ 2Dxkex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4pApB

p

:

ð3Þ

Partial derivatives of R2
eff with respect to all fitting

parameters are calculated analytically for LMA in

GLOVE, and therefore the fit is faster than would be the

case where they are derived numerically according to:

oReff
2

ox
¼ f xþ Dð Þ � f xð Þ

D
; ð4Þ

where x represents a fitting parameter and D is a small

value.

Processing relaxation dispersion data using the GLOVE

software package

We now describe briefly how R2 relaxation dispersion data

are processed using the GLOVE software package, toge-

ther with some important tips (Fig. 2). Relaxation disper-

sion spectra are measured using a Carr–Purcell–Meiboom–

Gill (CPMG) pulse sequence with a constant relaxation

Reff
2 ¼

1

2
R0

2A þ R0
2B þ kAB þ kBA �

1

sCP

cos h�1 Dþ cos h gþ
� �

� D� cos g�ð Þ
� �� �

D� ¼
1

2
�1þWþ 2Dx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ n2

p
" #

g� ¼ sCP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�Wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ n2

q	 
s

W ¼ R0
2A � R0

2B þ kAB � kBA

� �2�Dx2 þ 4kABkBA

n ¼ 2Dx R0
2A � R0

2B þ kAB � kBA

� �

; ð2Þ
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time of TCPMG (Vallurupalli et al. 2008). All spectra are

processed with the same parameters: solvent suppression,

apodizations, Fourier transformation, phase correction and

baseline correction. It should be noted that the order of the

baseline correction should be minimum; otherwise, inten-

sities of small signals might be modified significantly.

Linear prediction should not be used since it is not suitable

for quantitative analysis of NMR data.

Integrated peak intensities of non-overlapped peaks are

obtained typically as a sum of intensities at 3 9 3 grid points

centered on the peak top. This can be achieved using the

program pkfit included in the GLOVE software package.

An error in a peak intensity, eI, is evaluated from the standard

deviation of noise amplitudes in each spectrum and differ-

ences in peak intensities of duplicated spectra. A pkfit

output file contains the magnetic field B0 (in units of MHz),

TCPMG (s), 1/sCP (s-1), and peak intensities of all resonances

at each 1/sCP value. sCP represents the delay between suc-

cessive 180� pulses in the CPMG pulse train. It should be

noted that some research groups define sCPMG as a half delay

between two 180� pulses, and use mCPMG = 1/(4sCPMG)

instead of 1/sCP for the horizontal axis of a relaxation dis-

persion plot. mCPMG can be converted to 1/sCP according to

the equation: 1/sCP = 2mCPMG. R2
eff rates are calculated from

the obtained peak intensities using the program

cpmg2glove according to the formula:

Reff
2 sCPð Þ ¼ � 1

TCPMG

ln
I sCPð Þ

I0

	 

; ð5Þ

where I(sCP) represents peak intensity at a particular sCP

delay, and I0 is the intensity in the reference spectrum. An

error of R2
eff is calculated from eI as (Ishima and Torchia

2005).

ri ¼ eI

I sCPð Þ � TCPMG

: ð6Þ

The program cpmg2glove creates a GLOVE input

file, which contains fitting procedure, fitting parameters,

and experimental data, from single or multiple sets of

intensities measured under different experimental

conditions, such as magnetic field, temperature, and

sample concentration.

GLOVE fits the relaxation dispersion data according to

the input file, and outputs a summary of the result in a text

file and graphical plots in the Xmgr or Grace format

(http://plasma-gate.weizmann.ac.il/Grace/). Although GLOVE

creates an Xmgr file for each resonance (residue) in the

dataset, these can be merged into a single PDF file with a

reduced graph size using the program mplot to facilitate

comparisons of the relaxation dispersion profiles. GLOVE

also reports a reduced v2 value (v2 divided by the degrees-of-

freedom) to the standard output, or a monitor, in real time

during a fit. Standard deviations of fitting parameters are

calculated using the covariance matrix method by default,

and optionally calculated using the Monte Carlo and/or

jackknife methods (Press et al. 2007; Mosteller and Tukey

1968).

Demonstration of relaxation dispersion curve fitting

To demonstrate the performance of GLOVE, we fitted

(110 = 55 resonances 9 2 magnetic fields) 15N R2 relax-

ation dispersion profiles of the KIX domain of CREB-

binding protein. KIX is known to interconvert with a non-

native conformation through a two-state exchange mecha-

nism (Schanda et al. 2008). The relaxation dispersion data

were recorded previously (Matsuki et al. 2011) on Bruker

DRX600 and DMX750 spectrometers at 25 �C using

0.5 mM [15N]-KIX. Two-dimensional data sets with

1,024 9 64 (t2 9 t1) complex points were acquired at

sCP = 10, 5, 3.33, 2.5, 2.0, 1.66, 1.43, 1.25, 1.0, 0.83, 0.71,

0.63, 0.55, 0.50, 0.4, and 0.33 ms with a constant relaxa-

tion time of TCPMG = 40 ms.

We tested the fitting speed and the accuracy using the

methods ONE, ONEEX, and GRID, and the combination

of the methods GRID ? ONEEX, RANDOM ? ONEEX,

MCMIN ? ONEEX, and RANDOM ? MCMIN ? O-

NEEX. It should be noted that we always validate newly

developed fitting methods and models using synthetic data

R2 dispersion measurement

Fourier transformation
in NMRView or NMRPipe format

chemical shift assignment
in NMRView format

collection of signal intensity
using pkfit

conversion to effective R2 rate
using cpmg2glove

R2 dispersion curve fitting
using glove 

merging graphical plots 
using mplot 

Fig. 2 Procedure for the analysis of relaxation dispersion data. The

programs included in the GLOVE software package are shown in

Courier New font. The main part of the data fitting using the GLOVE

program, whose executable command is glove, is shown as the grey

background
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with and without random noise. In the case of the com-

bined method RANDOM ? MCMIN ? ONEEX, which

shows the best performance as described below, the best-fit

parameters were identical to the input parameters if no

error was added to the synthetic data. Even with 5 %

random error of effective R2 rates, we confirmed that the

best-fit parameters were in excellent agreement with the

input parameters (Supporting Table S1).

All the relaxation dispersion profiles of KIX were

globally fitted to Eq. 3, in which kex and pApB were spec-

ified as global parameters. Parameter ranges were set to

100–2,500 for Dx, 5–4,000 for kex, and 0.005–0.09 for

pApB. The initial R2
0 rate was estimated as the lowest R2

eff

rate of each relaxation dispersion dataset. The minimiza-

tion using ONE, ONEEX and MCMIN started from the

lower limits of the parameters. For GRID, the fitting tests

were conducted for grid sizes of Dx, kex, pApB ranging

from 2 to 20. The iterations of RANDOM and MCMIN

were set to 20 and 5, respectively when they were used

solely or combined with ONEEX, and the iteration of

RANDOM was set to 5 when it was used in combination

with MCMIN. MCMIN was repeated three times, reducing

the scaling factor sequentially from 0.1 to 0.001 by a factor

of 0.1. RANDOM and MCMIN use random number gen-

erators, providing different results every time; therefore,

the fitting tests using RANDOM or MCMIN were repeated

Fig. 3 Representative 15N

relaxation dispersion profiles for

KIX with the best-fit curves.

The relaxation dispersion data

were collected at 15N

frequencies of 60.83 MHz

(black line) and 76.01 MHz (red

line). The plots were initially

created by GLOVE for

individual residues, and merged

using mplot into a single PDF

file. The numbers followed by

‘‘–HN’’ on the upper left of the

plots are the residue number

280 J Biomol NMR (2013) 56:275–283
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ten times, and the average and standard deviations of the

reduced v2 and computational time were calculated. Stan-

dard deviations of the fitted parameters were estimated

using the covariance matrix method.

All tests were performed on Apple iMac with dual

3.4 GHz Intel Core i7 processors using the GLOVE exe-

cutable binary compiled by the Intel C?? compiler.

Results and discussion

To address which method or which combination of meth-

ods fits the data the most rapidly and most accurately, we

carried out global fits of 110 relaxation dispersion profiles

of KIX using the methods implemented in GLOVE and

combinations of them. Since the reduced v2 value con-

verged to 1.45047 as the lowest value in many tests, we

considered this value to be the global minimum. The global

parameters kex and pApB converged to 600 ± 5 s-1 and

0.0343 ± 0.0002, respectively when the reduced v2 value

was 1.45047. Thus, these values were considered to be the

best-fit parameter values. Figure 3 shows representative

relaxation dispersion profiles and the best-fit curves. The

graphical plots were created in PDF format using the

GLOVE software package, and were not modified except

for the file format conversion.

The fitting protocol ONE, which is a single point min-

imization starting from the lower limits of the parameters,

could not find the global minimum (Table 1). This outcome

means that relaxation dispersion curve fitting has a local

minimum problem, and thus, well estimated initial values

or multiple fits from different initial parameters are

required to find the global minimum. ONEEX provided a

smaller reduced v2 value than ONE, but it also failed to

find the global minimum, and the computational time was

very long. ONEEX should not be used for the initial stage

of a fit although ONEEX shows a very good performance

at the final stage of a fit, as described below.

We then focused on the grid search method, which is

commonly used by other programs to fit relaxation dis-

persion data, and examined how many grid sizes are

required to find the global minimum by fitting the test data

with grid sizes ranging from 2 to 20. However, none of the

fits reached the global minimum (Fig. 4a). A grid size of 11

Table 1 Speed and accuracy tests of relaxation dispersion curve

fitting

Method Reduced v2 valuea Computational time (s)

ONE 14.9719 0.3

ONEEX 9.82986 1,036

RANDOM

? ONEEXb

2.06638 (0.78064)

? 1.45047 (0)c

62 (9)d

RANDOM

? MCMIN

? ONEEXb

3.70891 (0.84149)

? 1.45052 (0.00008)

? 1.45047 (0)c

38 (12)d

MCMIN

? ONEEXb

9.54153 (3.05157)

? 8.93963 (3.12073)c

2,924 (2,398)d

a The initial reduced v2 value is 88.7611
b The tests were repeated ten times
c The average of the reduced v2 values after each method is shown

with the standard deviation in parentheses. The arrows indicates that

the fitting parameters were sequentially minimized using the method

written on the same line in the Method column
d The average total computational time is shown with the standard

deviation in parentheses
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Fig. 4 Fitting accuracy and speed using the grid search method. a
The reduced v2 values of the fits using the methods GRID (black) and

GRID ? ONEEX (red) plotted against the grid size. The inset is an

enlarged view of the same plot. The symbols have been omitted for

clarity. b The computational time for the fits using GRID (black) and

GRID ? ONEEX (red) plotted against the grid size. The vertical

scale is shown on the left-hand side of the plot. The green line

represents the total grid size Ntotal, whose vertical scale is shown on

the right-hand side of the plot. Ntotal is calculated as:

N total ¼
Q

i N
global
i

P
j

Q
k Nlocal

j;k , where Ni
global and Nj,k

local represents

the grid sizes of the i-th global parameter and the k-th local parameter

in the j-th dataset, respectively
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provided the lowest reduced v2 value of 1.45056, which is

very slightly higher than that of the global minimum. The

resulting global parameters kex and pApB (603 ± 5 s-1 and

0.0342 ± 0.0002, respectively) were the same as the best-

fit values within the uncertainties. However, when the grid

size was increased from 11 to 18, the fitted kex and pApB

(515 ± 5 s-1 and 0.0366 ± 0.0002) were obviously far

from the best-fit values. Note that the fitting quality

(reduced v2 value) did not always improve with the

increase of grid size although the computational time

increased collinearly with the total grid size (Fig. 4b).

Interestingly, application of ONEEX following GRID

always reached the global minimum with an additional

computational time of less than 1 min (Fig. 4a). Therefore,

ONEEX is suitable to use at the final stage of a fit to

converge the parameters to the global minimum.

Fits using RANDOM or MCMIN alone failed to find the

global minimum, despite the fact that the fits were repeated

ten times for each method (Table 1). However, if ONEEX

was used after RANDOM, the fits always converged to the

global minimum. Furthermore, the combined method

RANDOM ? MCMIN ? ONEEX found the global mini-

mum much faster than any other method. On the other hand,

the fit starting with MCMIN followed by ONEEX resulted in

larger reduced v2 values, and the computational time was

extremely long. The reason is twofold. Firstly, MCMIN was

designed to optimize the parameters more finely than

RANDOM, and the tests started from the lower limits of the

parameters that are far from the best-fit values, hence

MCMIN failed to find the global minimum. Nevertheless,

the combined method MCMIN ? ONEEX could find the

global minimum if an additional MCMIN calculation with

10 iterations and scale of 1 was added prior to the MCMI-

N ? ONEEX calculation; however, this MCMIN ? MC-

MIN ? ONEEX calculation did not search the parameter

space as efficiently as RANDOM ? MCMIN ? ONEEX

(data not shown). Secondly, ONEEX takes a long time to

converge to a global or local minimum. Indeed, the com-

putational time of the combined methods including ONEEX

was spent mainly on the ONEEX stage. Therefore, before the

ONEEX calculation, the fitting parameters should be opti-

mized to be as close as possible to the global minimum in

order to shorten the computational time. The reason why the

computational time of RANDOM ? MCMIN ? ONEEX

was shorter than that of the other methods is that the reduced

v2 value before ONEEX was the smallest.

Using the combined method RANDOM ? MCMI-

N ? ONEEX, we have already succeeded in fitting a large

number of relaxation dispersion datasets (Bhabha et al.

2011; Meinhold and Wright 2011; Sugase et al. 2007b;

Boehr et al. 2006), including fits of a three-state exchange

model which describes coupled folding and binding pro-

cesses of an intrinsically disordered protein (Sugase et al.

2007a). This combined method should be widely applica-

ble to the analysis of relaxation dispersion data. Further-

more, GLOVE was developed to solve general non-linear

least-square problems, and has built-in functions for the

analysis of CLEANEX-PM (Hwang et al. 1998), and R1

and R2 relaxation data. Of course, the combined RAN-

DOM ? MCMIN ? ONEEX method will also be useful

for fitting such data. Since other functions can readily be

added, GLOVE will undoubtedly find wide applications for

the analysis of a broad range of experimental data.

For a computer required for GLOVE, we used a rela-

tively fast computer in performing the above tests of

GLOVE. For comparison, we also ran a test fit using the

GLOVE executable binary compiled by g?? for RAN-

DOM ? MCMIN ? ONEEX, which showed the best

performance in finding the global minimum, on an old and

slow computer (Cygwin running on Windows Vista PC

with a 2.2 GHz Intel Core2 Duo processor). This test was

repeated ten times, but always converged to the global

minimum with a computational time of 202 ± 52 s. As this

computational time would still be tolerable, GLOVE could

be used on a broad range of computers.
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